getAffineX()源码实例Demo

java.security.spec.ECPoint#getAffineX()源码实例Demo

下面列出了java.security.spec.ECPoint#getAffineX() 实例代码,或者点击链接到github查看源代码,也可以在右侧发表评论。

源代码1 项目: wycheproof   文件: EcUtil.java
/**
 * Checks that a point is on a given elliptic curve. This method implements the partial public key
 * validation routine from Section 5.6.2.6 of NIST SP 800-56A
 * http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf A partial
 * public key validation is sufficient for curves with cofactor 1. See Section B.3 of
 * http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf The point validations above are
 * taken from recommendations for ECDH, because parameter checks in ECDH are much more important
 * than for the case of ECDSA. Performing this test for ECDSA keys is mainly a sanity check.
 *
 * @param point the point that needs verification
 * @param ec the elliptic curve. This must be a curve over a prime order field.
 * @throws GeneralSecurityException if the field is binary or if the point is not on the curve.
 */
public static void checkPointOnCurve(ECPoint point, EllipticCurve ec)
    throws GeneralSecurityException {
  BigInteger p = getModulus(ec);
  BigInteger x = point.getAffineX();
  BigInteger y = point.getAffineY();
  if (x == null || y == null) {
    throw new GeneralSecurityException("point is at infinity");
  }
  // Check 0 <= x < p and 0 <= y < p.
  if (x.signum() == -1 || x.compareTo(p) != -1) {
    throw new GeneralSecurityException("x is out of range");
  }
  if (y.signum() == -1 || y.compareTo(p) != -1) {
    throw new GeneralSecurityException("y is out of range");
  }
  // Check y^2 == x^3 + a x + b (mod p)
  BigInteger lhs = y.multiply(y).mod(p);
  BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p);
  if (!lhs.equals(rhs)) {
    throw new GeneralSecurityException("Point is not on curve");
  }
}
 
public static void main(String[] args) throws Exception {
	
	
	KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC");
    ECGenParameterSpec gps = new ECGenParameterSpec ("secp256r1"); // NIST P-256 
    kpg.initialize(gps); 
    KeyPair apair = kpg.generateKeyPair(); 
    ECPublicKey apub  = (ECPublicKey)apair.getPublic();
    ECParameterSpec aspec = apub.getParams();
    // could serialize aspec for later use (in compatible JRE)
    //
    // for test only reuse bogus pubkey, for real substitute values 
    ECPoint apoint = apub.getW();
    BigInteger x = apoint.getAffineX(), y = apoint.getAffineY();
    // construct point plus params to pubkey
    ECPoint bpoint = new ECPoint (x,y); 
    ECPublicKeySpec bpubs = new ECPublicKeySpec (bpoint, aspec);
    KeyFactory kfa = KeyFactory.getInstance ("EC");
    ECPublicKey bpub = (ECPublicKey) kfa.generatePublic(bpubs);
    
    new Ssh2EcdsaSha2NistPublicKey(bpub);
}
 
源代码3 项目: protect   文件: EciesEncryption.java
protected static byte[] encrypt(final byte[] message, final BigInteger r, final PublicKey publicKey) {
	if (publicKey instanceof ECPublicKey) {
		final ECPublicKey ecPublicKey = (ECPublicKey) publicKey;
		final ECPoint javaPoint = ecPublicKey.getW();
		final EcPoint point = new EcPoint(javaPoint.getAffineX(), javaPoint.getAffineY());
		return encrypt(message, r, point);
	} else {
		throw new IllegalArgumentException("Key type must be ECPublicKey!");
	}
}
 
源代码4 项目: protect   文件: EciesEncryption.java
protected static byte[] decrypt(final byte[] ciphertext, final BigInteger r, PublicKey publicKey)
		throws BadPaddingException, IllegalBlockSizeException {
	if (publicKey instanceof ECPublicKey) {
		final ECPublicKey ecPublicKey = (ECPublicKey) publicKey;
		final ECPoint javaPoint = ecPublicKey.getW();
		final EcPoint point = new EcPoint(javaPoint.getAffineX(), javaPoint.getAffineY());
		return decrypt(ciphertext, r, point);
	} else {
		throw new IllegalArgumentException("Key type must be ECPublicKey!");
	}
}
 
源代码5 项目: wycheproof   文件: EcUtil.java
/**
 * Returns a weak public key of order 3 such that the public key point is on the curve specified
 * in ecParams. This method is used to check ECC implementations for missing step in the
 * verification of the public key. E.g. implementations of ECDH must verify that the public key
 * contains a point on the curve as well as public and secret key are using the same curve.
 *
 * @param ecParams the parameters of the key to attack. This must be a curve in Weierstrass form
 *     over a prime order field.
 * @return a weak EC group with a genrator of order 3.
 */
public static ECPublicKeySpec getWeakPublicKey(ECParameterSpec ecParams)
    throws GeneralSecurityException {
  EllipticCurve curve = ecParams.getCurve();
  KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
  keyGen.initialize(ecParams);
  BigInteger p = getModulus(curve);
  BigInteger three = new BigInteger("3");
  while (true) {
    // Generate a point on the original curve
    KeyPair keyPair = keyGen.generateKeyPair();
    ECPublicKey pub = (ECPublicKey) keyPair.getPublic();
    ECPoint w = pub.getW();
    BigInteger x = w.getAffineX();
    BigInteger y = w.getAffineY();
    // Find the curve parameters a,b such that 3*w = infinity.
    // This is the case if the following equations are satisfied:
    //    3x == l^2 (mod p)
    //    l == (3x^2 + a) / 2*y (mod p)
    //    y^2 == x^3 + ax + b (mod p)
    BigInteger l;
    try {
      l = modSqrt(x.multiply(three), p);
    } catch (GeneralSecurityException ex) {
      continue;
    }
    BigInteger xSqr = x.multiply(x).mod(p);
    BigInteger a = l.multiply(y.add(y)).subtract(xSqr.multiply(three)).mod(p);
    BigInteger b = y.multiply(y).subtract(x.multiply(xSqr.add(a))).mod(p);
    EllipticCurve newCurve = new EllipticCurve(curve.getField(), a, b);
    // Just a sanity check.
    checkPointOnCurve(w, newCurve);
    // Cofactor and order are of course wrong.
    ECParameterSpec spec = new ECParameterSpec(newCurve, w, p, 1);
    return new ECPublicKeySpec(w, spec);
  }
}
 
源代码6 项目: swim   文件: EcPointDef.java
public static EcPointDef from(ECPoint point) {
  return new EcPointDef(point.getAffineX(), point.getAffineY());
}
 
源代码7 项目: j2objc   文件: ECPointTest.java
/**
 * Test #1 for <code>getAffineX()</code> method<br>
 * Assertion: returns affine <code>x</code> coordinate<br>
 * Test preconditions: <code>ECPoint</code> instance
 * created using valid parameters<br>
 * Expected: must return affine <code>x</code> coordinate
 * which is equal to the one passed to the constructor;
 * (both must refer the same object)
 */
public final void testGetAffineX01() {
    BigInteger x = BigInteger.valueOf(-23456L);
    ECPoint p = new ECPoint(x, BigInteger.valueOf(23456L));
    BigInteger xRet = p.getAffineX();
    assertEquals(x, xRet);
    assertSame(x, xRet);
}
 
源代码评论
动弹
沙发等你来抢
 方法所在类
 同类方法