下面列出了怎么用org.apache.spark.sql.KeyValueGroupedDataset的API类实例代码及写法,或者点击链接到github查看源代码。
@Override
public void translateTransform(
PTransform<PCollection<KV<K, V>>, PCollection<KV<K, Iterable<V>>>> transform,
TranslationContext context) {
@SuppressWarnings("unchecked")
final PCollection<KV<K, V>> inputPCollection = (PCollection<KV<K, V>>) context.getInput();
Dataset<WindowedValue<KV<K, V>>> input = context.getDataset(inputPCollection);
WindowingStrategy<?, ?> windowingStrategy = inputPCollection.getWindowingStrategy();
KvCoder<K, V> kvCoder = (KvCoder<K, V>) inputPCollection.getCoder();
Coder<V> valueCoder = kvCoder.getValueCoder();
// group by key only
Coder<K> keyCoder = kvCoder.getKeyCoder();
KeyValueGroupedDataset<K, WindowedValue<KV<K, V>>> groupByKeyOnly =
input.groupByKey(KVHelpers.extractKey(), EncoderHelpers.fromBeamCoder(keyCoder));
// group also by windows
WindowedValue.FullWindowedValueCoder<KV<K, Iterable<V>>> outputCoder =
WindowedValue.FullWindowedValueCoder.of(
KvCoder.of(keyCoder, IterableCoder.of(valueCoder)),
windowingStrategy.getWindowFn().windowCoder());
Dataset<WindowedValue<KV<K, Iterable<V>>>> output =
groupByKeyOnly.flatMapGroups(
new GroupAlsoByWindowViaOutputBufferFn<>(
windowingStrategy,
new InMemoryStateInternalsFactory<>(),
SystemReduceFn.buffering(valueCoder),
context.getSerializableOptions()),
EncoderHelpers.fromBeamCoder(outputCoder));
context.putDataset(context.getOutput(), output);
}
public static void main(String[] args) throws Exception {
//Read properties
Properties prop = PropertyFileReader.readPropertyFile();
//SparkSesion
SparkSession spark = SparkSession
.builder()
.appName("VideoStreamProcessor")
.master(prop.getProperty("spark.master.url"))
.getOrCreate();
//directory to save image files with motion detected
final String processedImageDir = prop.getProperty("processed.output.dir");
logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file.");
//create schema for json message
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField("cameraId", DataTypes.StringType, true),
DataTypes.createStructField("timestamp", DataTypes.TimestampType, true),
DataTypes.createStructField("rows", DataTypes.IntegerType, true),
DataTypes.createStructField("cols", DataTypes.IntegerType, true),
DataTypes.createStructField("type", DataTypes.IntegerType, true),
DataTypes.createStructField("data", DataTypes.StringType, true)
});
//Create DataSet from stream messages from kafka
Dataset<VideoEventData> ds = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers"))
.option("subscribe", prop.getProperty("kafka.topic"))
.option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes"))
.option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records"))
.load()
.selectExpr("CAST(value AS STRING) as message")
.select(functions.from_json(functions.col("message"),schema).as("json"))
.select("json.*")
.as(Encoders.bean(VideoEventData.class));
//key-value pair of cameraId-VideoEventData
KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() {
@Override
public String call(VideoEventData value) throws Exception {
return value.getCameraId();
}
}, Encoders.STRING());
//process
Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){
@Override
public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception {
logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId());
VideoEventData existing = null;
//check previous state
if (state.exists()) {
existing = state.get();
}
//classify image
VideoEventData processed = ImageProcessor.process(key,values,processedImageDir,existing);
//update last processed
if(processed != null){
state.update(processed);
}
return processed;
}}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class));
//start
StreamingQuery query = processedDataset.writeStream()
.outputMode("update")
.format("console")
.start();
//await
query.awaitTermination();
}
public static void main(String[] args) throws Exception {
//Read properties
Properties prop = PropertyFileReader.readPropertyFile();
//SparkSesion
SparkSession spark = SparkSession
.builder()
.appName("VideoStreamProcessor")
.master(prop.getProperty("spark.master.url"))
.getOrCreate();
//directory to save image files with motion detected
final String processedImageDir = prop.getProperty("processed.output.dir");
logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file.");
//create schema for json message
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField("cameraId", DataTypes.StringType, true),
DataTypes.createStructField("timestamp", DataTypes.TimestampType, true),
DataTypes.createStructField("rows", DataTypes.IntegerType, true),
DataTypes.createStructField("cols", DataTypes.IntegerType, true),
DataTypes.createStructField("type", DataTypes.IntegerType, true),
DataTypes.createStructField("data", DataTypes.StringType, true)
});
//Create DataSet from stream messages from kafka
Dataset<VideoEventData> ds = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers"))
.option("subscribe", prop.getProperty("kafka.topic"))
.option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes"))
.option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records"))
.load()
.selectExpr("CAST(value AS STRING) as message")
.select(functions.from_json(functions.col("message"),schema).as("json"))
.select("json.*")
.as(Encoders.bean(VideoEventData.class));
//key-value pair of cameraId-VideoEventData
KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() {
@Override
public String call(VideoEventData value) throws Exception {
return value.getCameraId();
}
}, Encoders.STRING());
//process
Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){
@Override
public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception {
logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId());
VideoEventData existing = null;
//check previous state
if (state.exists()) {
existing = state.get();
}
//detect motion
VideoEventData processed = VideoMotionDetector.detectMotion(key,values,processedImageDir,existing);
//update last processed
if(processed != null){
state.update(processed);
}
return processed;
}}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class));
//start
StreamingQuery query = processedDataset.writeStream()
.outputMode("update")
.format("console")
.start();
//await
query.awaitTermination();
}
@Override
public void translateTransform(
PTransform<PCollection<KV<K, InputT>>, PCollection<KV<K, OutputT>>> transform,
TranslationContext context) {
Combine.PerKey combineTransform = (Combine.PerKey) transform;
@SuppressWarnings("unchecked")
final PCollection<KV<K, InputT>> input = (PCollection<KV<K, InputT>>) context.getInput();
@SuppressWarnings("unchecked")
final PCollection<KV<K, OutputT>> output = (PCollection<KV<K, OutputT>>) context.getOutput();
@SuppressWarnings("unchecked")
final Combine.CombineFn<InputT, AccumT, OutputT> combineFn =
(Combine.CombineFn<InputT, AccumT, OutputT>) combineTransform.getFn();
WindowingStrategy<?, ?> windowingStrategy = input.getWindowingStrategy();
Dataset<WindowedValue<KV<K, InputT>>> inputDataset = context.getDataset(input);
KvCoder<K, InputT> inputCoder = (KvCoder<K, InputT>) input.getCoder();
Coder<K> keyCoder = inputCoder.getKeyCoder();
KvCoder<K, OutputT> outputKVCoder = (KvCoder<K, OutputT>) output.getCoder();
Coder<OutputT> outputCoder = outputKVCoder.getValueCoder();
KeyValueGroupedDataset<K, WindowedValue<KV<K, InputT>>> groupedDataset =
inputDataset.groupByKey(KVHelpers.extractKey(), EncoderHelpers.fromBeamCoder(keyCoder));
Coder<AccumT> accumulatorCoder = null;
try {
accumulatorCoder =
combineFn.getAccumulatorCoder(
input.getPipeline().getCoderRegistry(), inputCoder.getValueCoder());
} catch (CannotProvideCoderException e) {
throw new RuntimeException(e);
}
Dataset<Tuple2<K, Iterable<WindowedValue<OutputT>>>> combinedDataset =
groupedDataset.agg(
new AggregatorCombiner<K, InputT, AccumT, OutputT, BoundedWindow>(
combineFn, windowingStrategy, accumulatorCoder, outputCoder)
.toColumn());
// expand the list into separate elements and put the key back into the elements
WindowedValue.WindowedValueCoder<KV<K, OutputT>> wvCoder =
WindowedValue.FullWindowedValueCoder.of(
outputKVCoder, input.getWindowingStrategy().getWindowFn().windowCoder());
Dataset<WindowedValue<KV<K, OutputT>>> outputDataset =
combinedDataset.flatMap(
(FlatMapFunction<
Tuple2<K, Iterable<WindowedValue<OutputT>>>, WindowedValue<KV<K, OutputT>>>)
tuple2 -> {
K key = tuple2._1();
Iterable<WindowedValue<OutputT>> windowedValues = tuple2._2();
List<WindowedValue<KV<K, OutputT>>> result = new ArrayList<>();
for (WindowedValue<OutputT> windowedValue : windowedValues) {
KV<K, OutputT> kv = KV.of(key, windowedValue.getValue());
result.add(
WindowedValue.of(
kv,
windowedValue.getTimestamp(),
windowedValue.getWindows(),
windowedValue.getPane()));
}
return result.iterator();
},
EncoderHelpers.fromBeamCoder(wvCoder));
context.putDataset(output, outputDataset);
}