下面列出了怎么用org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException的API类实例代码及写法,或者点击链接到github查看源代码。
@Override
public SlopeCoefficients estimateCoefficients(final DerivationEquation eq)
throws EstimationException {
final double[][] sourceTriangleMatrix = eq.getCovarianceLowerTriangularMatrix();
// Copy matrix and enhance it to a full matrix as expected by CholeskyDecomposition
// FIXME: Avoid copy job to speed-up the solving process e.g. by extending the CholeskyDecomposition constructor
final int length = sourceTriangleMatrix.length;
final double[][] matrix = new double[length][];
for (int i = 0; i < length; i++) {
matrix[i] = new double[length];
final double[] s = sourceTriangleMatrix[i];
final double[] t = matrix[i];
for (int j = 0; j <= i; j++) {
t[j] = s[j];
}
for (int j = i + 1; j < length; j++) {
t[j] = sourceTriangleMatrix[j][i];
}
}
final RealMatrix coefficients =
new Array2DRowRealMatrix(matrix, false);
try {
final DecompositionSolver solver = new CholeskyDecomposition(coefficients).getSolver();
final RealVector constants = new ArrayRealVector(eq.getConstraints(), true);
final RealVector solution = solver.solve(constants);
return new DefaultSlopeCoefficients(solution.toArray());
} catch (final NonPositiveDefiniteMatrixException e) {
throw new EstimationException("Matrix inversion error due to data is linearly dependent", e);
}
}
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
final Pair<RealMatrix, RealVector> normalEquation =
computeNormalMatrix(jacobian, residuals);
final RealMatrix normal = normalEquation.getFirst();
final RealVector jTr = normalEquation.getSecond();
return new CholeskyDecomposition(
normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
.getSolver()
.solve(jTr);
} catch (NonPositiveDefiniteMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
final Pair<RealMatrix, RealVector> normalEquation =
computeNormalMatrix(jacobian, residuals);
final RealMatrix normal = normalEquation.getFirst();
final RealVector jTr = normalEquation.getSecond();
return new CholeskyDecomposition(
normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
.getSolver()
.solve(jTr);
} catch (NonPositiveDefiniteMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param rng Random Number Generator.
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(RandomGenerator rng,
final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
super(rng, means.length);
final int dim = means.length;
if (covariances.length != dim) {
throw new DimensionMismatchException(covariances.length, dim);
}
for (int i = 0; i < dim; i++) {
if (dim != covariances[i].length) {
throw new DimensionMismatchException(covariances[i].length, dim);
}
}
this.means = MathArrays.copyOf(means);
covarianceMatrix = new Array2DRowRealMatrix(covariances);
// Covariance matrix eigen decomposition.
final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);
// Compute and store the inverse.
covarianceMatrixInverse = covMatDec.getSolver().getInverse();
// Compute and store the determinant.
covarianceMatrixDeterminant = covMatDec.getDeterminant();
// Eigenvalues of the covariance matrix.
final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();
for (int i = 0; i < covMatEigenvalues.length; i++) {
if (covMatEigenvalues[i] < 0) {
throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
}
}
// Matrix where each column is an eigenvector of the covariance matrix.
final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
for (int v = 0; v < dim; v++) {
final double[] evec = covMatDec.getEigenvector(v).toArray();
covMatEigenvectors.setColumn(v, evec);
}
final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
// Scale each eigenvector by the square root of its eigenvalue.
for (int row = 0; row < dim; row++) {
final double factor = FastMath.sqrt(covMatEigenvalues[row]);
for (int col = 0; col < dim; col++) {
tmpMatrix.multiplyEntry(row, col, factor);
}
}
samplingMatrix = covMatEigenvectors.multiply(tmpMatrix);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
* <p>
* <b>Note:</b> this constructor will implicitly create an instance of
* {@link Well19937c} as random generator to be used for sampling only (see
* {@link #sample()} and {@link #sample(int)}). In case no sampling is
* needed for the created distribution, it is advised to pass {@code null}
* as random generator via the appropriate constructors to avoid the
* additional initialisation overhead.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}
/**
* Creates a multivariate normal distribution with the given mean vector and
* covariance matrix.
* <br/>
* The number of dimensions is equal to the length of the mean vector
* and to the number of rows and columns of the covariance matrix.
* It is frequently written as "p" in formulae.
* <p>
* <b>Note:</b> this constructor will implicitly create an instance of
* {@link Well19937c} as random generator to be used for sampling only (see
* {@link #sample()} and {@link #sample(int)}). In case no sampling is
* needed for the created distribution, it is advised to pass {@code null}
* as random generator via the appropriate constructors to avoid the
* additional initialisation overhead.
*
* @param means Vector of means.
* @param covariances Covariance matrix.
* @throws DimensionMismatchException if the arrays length are
* inconsistent.
* @throws SingularMatrixException if the eigenvalue decomposition cannot
* be performed on the provided covariance matrix.
* @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is
* negative.
*/
public MultivariateNormalDistribution(final double[] means,
final double[][] covariances)
throws SingularMatrixException,
DimensionMismatchException,
NonPositiveDefiniteMatrixException {
this(new Well19937c(), means, covariances);
}