类weka.core.Option源码实例Demo

下面列出了怎么用weka.core.Option的API类实例代码及写法,或者点击链接到github查看源代码。

源代码1 项目: tsml   文件: NumericTransform.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
public Enumeration listOptions() {

  Vector newVector = new Vector(4);

  newVector.addElement(new Option(
            "\tSpecify list of columns to transform. First and last are\n"
     + "\tvalid indexes (default none). Non-numeric columns are \n"
     + "\tskipped.",
            "R", 1, "-R <index1,index2-index4,...>"));

  newVector.addElement(new Option(
     "\tInvert matching sense.",
            "V", 0, "-V"));

  newVector.addElement(new Option(
            "\tSets the class containing transformation method.\n"+
            "\t(default java.lang.Math)",
            "C", 1, "-C <string>"));

  newVector.addElement(new Option(
            "\tSets the method. (default abs)",
            "M", 1, "-M <string>"));

  return newVector.elements();
}
 
源代码2 项目: tsml   文件: MergeInfrequentNominalValues.java
/**
  * Returns an enumeration describing the available options.
  *
  * @return an enumeration of all the available options.
  */
 public Enumeration listOptions() {
   Vector<Option>        result;
   Enumeration   enm;

   result = new Vector<Option>();

   enm = super.listOptions();
   while (enm.hasMoreElements())
     result.addElement((Option)enm.nextElement());
   
   result.addElement(new Option("\tThe minimum frequency for a value to remain (default: 2).\n",
                                "-N", 1, "-N <int>"));

   result.addElement(new Option(
"\tSets list of attributes to act on (or its inverse). 'first and 'last' are accepted as well.'\n"
+ "\tE.g.: first-5,7,9,20-last\n"
+ "\t(default: 1,2)",
"R", 1, "-R <range>"));
   result.addElement(new Option(
       "\tInvert matching sense (i.e. act on all attributes not specified in list)",
       "V", 0, "-V"));

   return result.elements();
 }
 
源代码3 项目: tsml   文件: Resample.java
/**
  * Returns an enumeration describing the available options.
  *
  * @return an enumeration of all the available options.
  */
 public Enumeration listOptions() {
   Vector result = new Vector();

   result.addElement(new Option(
"\tSpecify the random number seed (default 1)",
"S", 1, "-S <num>"));

   result.addElement(new Option(
"\tThe size of the output dataset, as a percentage of\n"
+"\tthe input dataset (default 100)",
"Z", 1, "-Z <num>"));

   result.addElement(new Option(
"\tDisables replacement of instances\n"
+"\t(default: with replacement)",
"no-replacement", 0, "-no-replacement"));

   result.addElement(new Option(
"\tInverts the selection - only available with '-no-replacement'.",
"V", 0, "-V"));

   return result.elements();
 }
 
源代码4 项目: tsml   文件: CheckSource.java
/**
 * Executes the tests, use "-h" to list the commandline options.
 * 
 * @param args        the commandline parameters
 * @throws Exception  if something goes wrong
 */
public static void main(String[] args) throws Exception{
  CheckSource         check;
  StringBuffer        text;
  Enumeration         enm;
  
  check = new CheckSource();
  if (Utils.getFlag('h', args)) {
    text = new StringBuffer();   
    text.append("\nHelp requested:\n\n");
    enm = check.listOptions();
    while (enm.hasMoreElements()) {
      Option option = (Option) enm.nextElement();
      text.append(option.synopsis() + "\n");
      text.append(option.description() + "\n");
    }
    System.out.println("\n" + text + "\n");
  }
  else {
    check.setOptions(args);
    if (check.execute())
      System.out.println("Tests OK!");
    else
      System.out.println("Tests failed!");
  }
}
 
源代码5 项目: tsml   文件: TextDirectoryLoader.java
/** 
  * Lists the available options
  * 
  * @return 		an enumeration of the available options
  */  
 public Enumeration listOptions() {
   
   Vector<Option> result = new Vector<Option>();
   
   result.add(new Option(
"\tEnables debug output.\n"
+ "\t(default: off)",
"D", 0, "-D"));
   
   result.add(new Option(
"\tStores the filename in an additional attribute.\n"
+ "\t(default: off)",
"F", 0, "-F"));
   
   result.add(new Option(
"\tThe directory to work on.\n"
+ "\t(default: current directory)",
"dir", 0, "-dir <directory>"));
   
   result.add(new Option("\tThe character set to use, e.g UTF-8.\n\t" +
   		"(default: use the default character set)", "charset", 1, 
   		"-charset <charset name>"));    
   
   return  result.elements();
 }
 
源代码6 项目: tsml   文件: NNge.java
/**
 * Returns an enumeration of all the available options..
 *
 * @return an enumeration of all available options.
 */
public Enumeration listOptions(){

  Vector newVector = new Vector(2);

  newVector.addElement(new Option(
		    "\tNumber of attempts of generalisation.\n",
		    "G", 
		    1, 
		    "-G <value>"));
  newVector.addElement(new Option(
		    "\tNumber of folder for computing the mutual information.\n",
		    "I", 
		    1, 
		    "-I <value>"));

  return newVector.elements();
}
 
源代码7 项目: tsml   文件: HillClimber.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
public Enumeration listOptions() {
	Vector newVector = new Vector(2);

	newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>"));
	newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R"));
	newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N"));
	newVector.addElement(new Option("\tInitial structure specified in XML BIF file", "X", 1, "-X"));

	Enumeration enu = super.listOptions();
	while (enu.hasMoreElements()) {
		newVector.addElement(enu.nextElement());
	}
	return newVector.elements();
}
 
源代码8 项目: meka   文件: AbstractMarkdownGenerator.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {
	Vector<Option> result = new Vector<>();

	result.addElement(new Option(
		"\tIf set, generator is run in debug mode and\n"
			+ "\tmay output additional info to the console",
		"output-debug-info", 0, "-output-debug-info"));

	return result.elements();
}
 
源代码9 项目: tsml   文件: J48graft.java
/**
 * Returns an enumeration describing the available options.
 *
 * Valid options are: <p>
 *
 * -U <br>
 * Use unpruned tree.<p>
 *
 * -C confidence <br>
 * Set confidence threshold for pruning. (Default: 0.25) <p>
 *
 * -M number <br>
 * Set minimum number of instances per leaf. (Default: 2) <p>
 *
 * -B <br>
 * Use binary splits for nominal attributes. <p>
 *
 * -S <br>
 * Don't perform subtree raising. <p>
 *
 * -L <br>
 * Do not clean up after the tree has been built.
 *
 * -A <br>
 * If set, Laplace smoothing is used for predicted probabilites. 
 *  (note: this option only affects initial tree; grafting process always uses laplace). <p>
 *
 * -E <br>
 * Allow relabelling when grafting. <p>
 *
 * @return an enumeration of all the available options.
 */
public Enumeration listOptions() {

  Vector newVector = new Vector(9);

  newVector.
     addElement(new Option("\tUse unpruned tree.",
	      "U", 0, "-U"));
  newVector.
     addElement(new Option("\tSet confidence threshold for pruning.\n" +
                           "\t(default 0.25)",
	     "C", 1, "-C <pruning confidence>"));
  newVector.
     addElement(new Option("\tSet minimum number of instances per leaf.\n" +
	      "\t(default 2)",
	      "M", 1, "-M <minimum number of instances>"));
  newVector.
     addElement(new Option("\tUse binary splits only.",
	      "B", 0, "-B"));
  newVector.
     addElement(new Option("\tDon't perform subtree raising.",
	      "S", 0, "-S"));
  newVector.
     addElement(new Option("\tDo not clean up after the tree has been built.",
	      "L", 0, "-L"));
  newVector.
     addElement(new Option("\tLaplace smoothing for predicted probabilities.  (note: this option only affects initial tree; grafting process always uses laplace).",
 
	      "A", 0, "-A"));
  newVector.
     addElement(new Option("\tRelabel when grafting.",
                           "E", 0, "-E"));
  return newVector.elements();
}
 
源代码10 项目: tsml   文件: SGD.java
/**
 * Returns an enumeration describing the available options.
 * 
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {

  Vector<Option> newVector = new Vector<Option>();
  newVector.add(new Option("\tSet the loss function to minimize.\n\t0 = "
      + "hinge loss (SVM), 1 = log loss (logistic regression),\n\t"
      + "2 = squared loss (regression), 3 = epsilon insensitive loss (regression)," +
      "\n\t4 = Huber loss (regression).\n\t(default = 0)", "F", 1, "-F"));
  newVector
      .add(new Option(
          "\tThe learning rate. If normalization is\n"
              + "\tturned off (as it is automatically for streaming data), then the\n\t"
              + "default learning rate will need to be reduced "
              + "(try 0.0001).\n\t(default = 0.01).", "L", 1, "-L"));
  newVector.add(new Option("\tThe lambda regularization constant "
      + "(default = 0.0001)", "R", 1, "-R <double>"));
  newVector.add(new Option("\tThe number of epochs to perform ("
      + "batch learning only, default = 500)", "E", 1, "-E <integer>"));
  newVector.add(new Option("\tThe epsilon threshold ("
      + "epsilon-insenstive and Huber loss only, default = 1e-3)", "C", 1,
      "-C <double>"));
  newVector.add(new Option("\tDon't normalize the data", "N", 0, "-N"));
  newVector.add(new Option("\tDon't replace missing values", "M", 0, "-M"));

  return newVector.elements();
}
 
源代码11 项目: tsml   文件: ReliefFAttributeEval.java
/**
 * Returns an enumeration describing the available options.
 * @return an enumeration of all the available options.
 **/
public Enumeration listOptions () {
  Vector newVector = new Vector(4);
  newVector
    .addElement(new Option("\tSpecify the number of instances to\n" 
                           + "\tsample when estimating attributes.\n" 
                           + "\tIf not specified, then all instances\n" 
                           + "\twill be used.", "M", 1
                           , "-M <num instances>"));
  newVector.
    addElement(new Option("\tSeed for randomly sampling instances.\n" 
                          + "\t(Default = 1)", "D", 1
                          , "-D <seed>"));
  newVector.
    addElement(new Option("\tNumber of nearest neighbours (k) used\n" 
                          + "\tto estimate attribute relevances\n" 
                          + "\t(Default = 10).", "K", 1
                          , "-K <number of neighbours>"));
  newVector.
    addElement(new Option("\tWeight nearest neighbours by distance", "W"
                          , 0, "-W"));
  newVector.
    addElement(new Option("\tSpecify sigma value (used in an exp\n" 
                          + "\tfunction to control how quickly\n" 
                          + "\tweights for more distant instances\n" 
                          + "\tdecrease. Use in conjunction with -W.\n" 
                          + "\tSensible value=1/5 to 1/10 of the\n" 
                          + "\tnumber of nearest neighbours.\n" 
                          + "\t(Default = 2)", "A", 1, "-A <num>"));
  return  newVector.elements();
}
 
源代码12 项目: tsml   文件: InfoGainAttributeEval.java
/**
 * Returns an enumeration describing the available options.
 * @return an enumeration of all the available options.
 **/
public Enumeration listOptions () {
  Vector newVector = new Vector(2);
  newVector.addElement(new Option("\ttreat missing values as a seperate " 
                                  + "value.", "M", 0, "-M"));
  newVector.addElement(new Option("\tjust binarize numeric attributes instead \n" 
                                  +"\tof properly discretizing them.", "B", 0, 
                                  "-B"));
  return  newVector.elements();
}
 
源代码13 项目: tsml   文件: LinearForwardSelection.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 *
 */
public Enumeration listOptions() {
  Vector newVector = new Vector(8);

  newVector.addElement(new Option("\tSpecify a starting set of attributes." +
                                  "\n\tEg. 1,3,5-7.", "P", 1, "-P <start set>"));
  newVector.addElement(new Option(
                                  "\tForward selection method. (default = 0).", "D", 1,
                                  "-D <0 = forward selection | 1 = floating forward selection>"));
  newVector.addElement(new Option("\tNumber of non-improving nodes to" +
                                  "\n\tconsider before terminating search.", "N", 1, "-N <num>"));
  newVector.addElement(new Option("\tPerform initial ranking to select the" +
                                  "\n\ttop-ranked attributes.", "I", 0, "-I"));
  newVector.addElement(new Option(
                                  "\tNumber of top-ranked attributes that are " +
                                  "\n\ttaken into account by the search.", "K", 1, "-K <num>"));
  newVector.addElement(new Option(
                                  "\tType of Linear Forward Selection (default = 0).", "T", 1,
                                  "-T <0 = fixed-set | 1 = fixed-width>"));
  newVector.addElement(new Option(
                                  "\tSize of lookup cache for evaluated subsets." +
                                  "\n\tExpressed as a multiple of the number of" +
                                  "\n\tattributes in the data set. (default = 1)", "S", 1, "-S <num>"));
  newVector.addElement(new Option("\tverbose on/off", "Z", 0, "-Z"));

  return newVector.elements();
}
 
源代码14 项目: tsml   文件: Logistic.java
/**
 * Returns an enumeration describing the available options
 *
 * @return an enumeration of all the available options
 */
public Enumeration listOptions() {
  Vector newVector = new Vector(4);
  newVector.addElement(new Option("\tTurn on debugging output.",
		    "D", 0, "-D"));
  newVector.addElement(new Option("\tUse conjugate gradient descent rather than BFGS updates.",
		    "C", 0, "-C"));
  newVector.addElement(new Option("\tSet the ridge in the log-likelihood.",
		    "R", 1, "-R <ridge>"));
  newVector.addElement(new Option("\tSet the maximum number of iterations"+
		    " (default -1, until convergence).",
		    "M", 1, "-M <number>"));
  return newVector.elements();
}
 
源代码15 项目: meka   文件: AbstractNeuralNet.java
@Override
public Enumeration listOptions() {
	Vector result = new Vector();
	result.addElement(new Option("\tSets the number of hidden units\n\tdefault: 10", "H", 1, "-H <value>"));
	result.addElement(new Option("\tSets the maximum number of epochs\n\tdefault: 1000\t(auto-cut-out)", "E", 1, "-E <value>"));
	result.addElement(new Option("\tSets the learning rate (tyically somewhere between 'very small' and 0.1)\n\tdefault: 0.1", "r", 1, "-r <value>"));
	result.addElement(new Option("\tSets the momentum (typically somewhere between 0.1 and 0.9)\n\tdefault: 0.1", "m", 1, "-m <value>"));
	OptionUtils.add(result, super.listOptions());
	return OptionUtils.toEnumeration(result);
}
 
源代码16 项目: tsml   文件: CheckAttributeSelection.java
/**
 * Checks whether the scheme can take command line options.
 *
 * @return index 0 is true if the scheme can take options
 */
protected boolean[] canTakeOptions() {
  
  boolean[] result = new boolean[2];
  
  print("options...");
  if (getTestObject() instanceof OptionHandler) {
    println("yes");
    if (m_Debug) {
      println("\n=== Full report ===");
      Enumeration enu = ((OptionHandler) getTestObject()).listOptions();
      while (enu.hasMoreElements()) {
        Option option = (Option) enu.nextElement();
        print(option.synopsis() + "\n" 
            + option.description() + "\n");
      }
      println("\n");
    }
    result[0] = true;
  }
  else {
    println("no");
    result[0] = false;
  }
  
  return result;
}
 
源代码17 项目: tsml   文件: SubspaceCluster.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options
 */
public Enumeration listOptions() {
  Vector result = enumToVector(super.listOptions());

  result.addElement(new Option(
        "\tThe noise rate in percent (default " 
        + defaultNoiseRate() + ").\n"
        + "\tCan be between 0% and 30%. (Remark: The original \n"
        + "\talgorithm only allows noise up to 10%.)",
        "P", 1, "-P <num>"));

  result.addElement(new Option(
        "\tA cluster definition of class '" 
 + SubspaceClusterDefinition.class.getName().replaceAll(".*\\.", "") + "'\n"
 + "\t(definition needs to be quoted to be recognized as \n"
 + "\ta single argument).",
        "C", 1, "-C <cluster-definition>"));

  result.addElement(new Option(
     "", "", 0, 
     "\nOptions specific to " 
     + SubspaceClusterDefinition.class.getName() + ":"));

  result.addAll(
      enumToVector(new SubspaceClusterDefinition(this).listOptions()));

  return result.elements();
}
 
源代码18 项目: tsml   文件: Remove.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
public Enumeration listOptions() {

  Vector newVector = new Vector(2);

  newVector.addElement(new Option(
            "\tSpecify list of columns to delete. First and last are valid\n"
     +"\tindexes. (default none)",
            "R", 1, "-R <index1,index2-index4,...>"));
  newVector.addElement(new Option(
     "\tInvert matching sense (i.e. only keep specified columns)",
            "V", 0, "-V"));

  return newVector.elements();
}
 
源代码19 项目: meka   文件: OutputClassHierarchyMarkdown.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {
	Vector<Option> result = new Vector<>();
	Enumeration<Option> enm = super.listOptions();
	while (enm.hasMoreElements())
		result.add(enm.nextElement());

	result.addElement(new Option(
		"\tIf set, title is skipped in the output",
		"skip-title", 0, "-skip-title"));

	return result.elements();
}
 
源代码20 项目: tsml   文件: XRFFSaver.java
/**
 * Returns an enumeration describing the available options.
 * 
 * @return an enumeration of all the available options.
 */
public Enumeration listOptions() {
  Vector<Option>      result;
  
  result = new Vector<Option>();
  
  Enumeration en = super.listOptions();
  while (en.hasMoreElements())
    result.addElement((Option)en.nextElement());
  
  result.addElement(
      new Option(
          "\tThe class index (first and last are valid as well).\n"
          + "\t(default: last)",
          "C", 1, "-C <class index>"));
  
  result.addElement(
      new Option(
          "\tCompresses the data (uses '" 
          + XRFFLoader.FILE_EXTENSION_COMPRESSED 
          + "' as extension instead of '" 
          + XRFFLoader.FILE_EXTENSION + "')\n"
          + "\t(default: off)",
          "compress", 0, "-compress"));
  
  return result.elements();
}
 
源代码21 项目: meka   文件: PMCC.java
@Override
public Enumeration listOptions() {
	Vector result = new Vector();
	result.addElement(new Option("\tThe population size (of chains) -- should be smaller than the total number of chains evaluated (Is) \n\tdefault: 10", "M", 1, "-M <value>"));
	result.addElement(new Option("\tUse temperature: cool the chain down over time (from the beginning of the chain) -- can be faster\n\tdefault: 0 (no temperature)", "O", 1, "-O <value>"));
	result.addElement(new Option("\tIf using O = 1 for temperature, this sets the Beta constant      \n\tdefault: 0.03", "B", 1, "-B <value>"));
	OptionUtils.add(result, super.listOptions());
	return OptionUtils.toEnumeration(result);
}
 
源代码22 项目: tsml   文件: RandomForest.java
/**
  * Returns an enumeration describing the available options.
  *
  * @return an enumeration of all the available options
  */
 public Enumeration listOptions() {
   
   Vector newVector = new Vector();

   newVector.addElement(new Option(
"\tNumber of trees to build.",
"I", 1, "-I <number of trees>"));
   
   newVector.addElement(new Option(
"\tNumber of features to consider (<1=int(logM+1)).",
"K", 1, "-K <number of features>"));
   
   newVector.addElement(new Option(
"\tSeed for random number generator.\n"
+ "\t(default 1)",
"S", 1, "-S"));

   newVector.addElement(new Option(
"\tThe maximum depth of the trees, 0 for unlimited.\n"
+ "\t(default 0)",
"depth", 1, "-depth <num>"));
   
   newVector.addElement(new Option(
       "\tPrint the individual trees in the output", "print", 0, "-print"));
   
   newVector.addElement(new Option(
       "\tNumber of execution slots.\n"
       + "\t(default 1 - i.e. no parallelism)",
       "num-slots", 1, "-num-slots <num>"));

   Enumeration enu = super.listOptions();
   while (enu.hasMoreElements()) {
     newVector.addElement(enu.nextElement());
   }

   return newVector.elements();
 }
 
源代码23 项目: tsml   文件: BayesNetGenerator.java
/**
 * Returns an enumeration describing the available options
 * 
 * @return an enumeration of all the available options
 */
public Enumeration listOptions() {
	Vector newVector = new Vector(6);

	newVector.addElement(new Option("\tGenerate network (instead of instances)\n", "B", 0, "-B"));
	newVector.addElement(new Option("\tNr of nodes\n", "N", 1, "-N <integer>"));
	newVector.addElement(new Option("\tNr of arcs\n", "A", 1, "-A <integer>"));
	newVector.addElement(new Option("\tNr of instances\n", "M", 1, "-M <integer>"));
	newVector.addElement(new Option("\tCardinality of the variables\n", "C", 1, "-C <integer>"));
	newVector.addElement(new Option("\tSeed for random number generator\n", "S", 1, "-S <integer>"));
	newVector.addElement(new Option("\tThe BIF file to obtain the structure from.\n", "F", 1, "-F <file>"));

	return newVector.elements();
}
 
源代码24 项目: meka   文件: CrossValidation.java
/**
 * Returns an enumeration of all the available options..
 *
 * @return an enumeration of all available options.
 */
@Override
public Enumeration<Option> listOptions() {
	Vector result = new Vector();
	OptionUtils.add(result, super.listOptions());
	OptionUtils.addOption(result, numFoldsTipText(), "" + getDefaultNumFolds(), 'F');
	OptionUtils.addFlag(result, preserveOrderTipText(), 'O');
	OptionUtils.addOption(result, seedTipText(), "" + getDefaultSeed(), 'S');
	OptionUtils.addOption(result, thresholdTipText(), "" + getDefaultThreshold(), 'T');
	OptionUtils.addOption(result, verbosityTipText(), "" + getDefaultVerbosity(), 'V');
	OptionUtils.addOption(result, numThreadsTipText(), "" + getDefaultNumThreads(), "num-threads");
	return OptionUtils.toEnumeration(result);
}
 
源代码25 项目: wekaDeeplearning4j   文件: ActivationSoftSign.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {

  return Option.listOptionsForClass(this.getClass()).elements();
}
 
源代码26 项目: tsml   文件: SimpleKMeans.java
/**
 * Returns an enumeration describing the available options.
 * 
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration listOptions() {
  Vector result = new Vector();

  result.addElement(new Option("\tnumber of clusters.\n" + "\t(default 2).",
      "N", 1, "-N <num>"));

  result.addElement(new Option("\tInitialize using the k-means++ method.\n",
      "P", 0, "-P"));

  result.addElement(new Option("\tDisplay std. deviations for centroids.\n",
      "V", 0, "-V"));
  result.addElement(new Option("\tDon't replace missing values with mean/mode.\n",
      "M", 0, "-M"));

  result.add(new Option("\tDistance function to use.\n"
      + "\t(default: weka.core.EuclideanDistance)", "A", 1,
      "-A <classname and options>"));

  result.add(new Option("\tMaximum number of iterations.\n", "I", 1,
      "-I <num>"));

  result.addElement(new Option("\tPreserve order of instances.\n", "O", 0,
      "-O"));

  result
      .addElement(new Option(
          "\tEnables faster distance calculations, using cut-off values.\n"
              + "\tDisables the calculation/output of squared errors/distances.\n",
          "fast", 0, "-fast"));

  result.addElement(new Option("\tNumber of execution slots.\n"
      + "\t(default 1 - i.e. no parallelism)", "num-slots", 1,
      "-num-slots <num>"));

  Enumeration en = super.listOptions();
  while (en.hasMoreElements())
    result.addElement(en.nextElement());

  return result.elements();
}
 
源代码27 项目: wekaDeeplearning4j   文件: LossFMeasure.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {

  return Option.listOptionsForClass(this.getClass()).elements();
}
 
源代码28 项目: wekaDeeplearning4j   文件: LossMCXENT.java
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {

  return Option.listOptionsForClass(this.getClass()).elements();
}
 
源代码29 项目: wekaDeeplearning4j   文件: UniformDistribution.java
/**
 * Gets the current settings of the Classifier.
 *
 * @return an array of strings suitable for passing to setOptions
 */
@Override
public String[] getOptions() {

  return Option.getOptions(this, this.getClass());
}
 
/**
 * Returns an enumeration describing the available options.
 *
 * @return an enumeration of all the available options.
 */
@Override
public Enumeration<Option> listOptions() {

  return Option.listOptionsForClass(this.getClass()).elements();
}