类weka.core.converters.ArffLoader源码实例Demo

下面列出了怎么用weka.core.converters.ArffLoader的API类实例代码及写法,或者点击链接到github查看源代码。

源代码1 项目: CompetitiveJava   文件: logistic_regression.java
@param fileName
 * @return
 * @throws IOException
 */
public static Instances getDataSet(String fileName) throws IOException {
	/**
	 * we can set the file i.e., loader.setFile("finename") to load the data
	 */
	int classIdx = 1;
	/** the arffloader to load the arff file */
	ArffLoader loader = new ArffLoader();
	//loader.setFile(new File(fileName));
	/** load the traing data */
	loader.setSource(LogisticRegressionDemo.class.getResourceAsStream("/" + fileName));
	/**
	 * we can also set the file like loader3.setFile(new
	 * File("test-confused.arff"));
	 */
	Instances dataSet = loader.getDataSet();
	/** set the index based on the data given in the arff files */
	dataSet.setClassIndex(classIdx);
	return dataSet;
}
 
/**
 * @param args the command line arguments
 */
public static void main(String[] args) throws Exception {
    ArffLoader loader = new ArffLoader();
    loader.setSource(new File("/Users/admin/Documents/NetBeansProjects/Datasets/weather.arff"));
    Instances data = loader.getDataSet();
    
    CSVSaver saver = new CSVSaver();
    saver.setInstances(data);
    
    saver.setFile(new File("weather.csv"));
    saver.writeBatch();
}
 
源代码3 项目: Criteria2Query   文件: RelExTool.java
public void trainClassifier(String trainfile,String modelpath) throws Exception{
	Classifier m_classifier = new RandomForest();
	File inputFile = new File(trainfile);
	ArffLoader atf = new ArffLoader(); 
	atf.setFile(inputFile);
	Instances instancesTrain = atf.getDataSet(); 
	instancesTrain.setClassIndex(6);
       m_classifier.buildClassifier(instancesTrain); 
       saveModel(m_classifier, modelpath);
}
 
源代码4 项目: bestconf   文件: DataIOFile.java
/**
 * Return the data set loaded from the Arff file at @param path
 */
public static Instances loadDataFromArffFile(String path) throws IOException{
	ArffLoader loader = new ArffLoader();
    loader.setSource(new File(path));
    Instances data = loader.getDataSet();
    
    System.out.println("\nHeader of dataset:\n");
    System.out.println(new Instances(data, 0));
    return data;
}