下面列出了org.apache.hadoop.mapred.RecordReader#next ( ) 实例代码,或者点击链接到github查看源代码,也可以在右侧发表评论。
@Override
public Long call() throws Exception {
RecordReader<LongWritable, Text> reader = _inputFormat.getRecordReader(_split, _jobConf, Reporter.NULL);
LongWritable key = new LongWritable();
Text value = new Text();
long nrows = 0;
try{
// count rows from the first non-header row
if (_hasHeader)
reader.next(key, value);
while (reader.next(key, value))
nrows++;
}
finally {
IOUtilFunctions.closeSilently(reader);
}
return nrows;
}
@Override
public Object call()
throws Exception
{
RecordReader<LongWritable, Text> reader = _informat.getRecordReader(_split, _job, Reporter.NULL);
LongWritable key = new LongWritable();
Text oneLine = new Text();
try {
// count rows from the first row
while (reader.next(key, oneLine)) {
_nrows++;
}
}
catch (Exception e) {
_rc = false;
_errMsg = "RecordReader error libsvm format. split: "+ _split.toString() + e.getMessage();
throw new IOException(_errMsg);
}
finally {
IOUtilFunctions.closeSilently(reader);
}
return null;
}
private void ensureRecordsInCommit(String msg, String commit, int expectedNumberOfRecordsInCommit,
int totalExpected) throws IOException {
int actualCount = 0;
int totalCount = 0;
InputSplit[] splits = inputFormat.getSplits(jobConf, 1);
for (InputSplit split : splits) {
RecordReader<NullWritable, ArrayWritable> recordReader = inputFormat.getRecordReader(split, jobConf, null);
NullWritable key = recordReader.createKey();
ArrayWritable writable = recordReader.createValue();
while (recordReader.next(key, writable)) {
// writable returns an array with [field1, field2, _hoodie_commit_time,
// _hoodie_commit_seqno]
// Take the commit time and compare with the one we are interested in
if (commit.equals((writable.get()[2]).toString())) {
actualCount++;
}
totalCount++;
}
}
assertEquals(expectedNumberOfRecordsInCommit, actualCount, msg);
assertEquals(totalExpected, totalCount, msg);
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
protected Pair<Integer,Integer> computeCSVSize( Path path, JobConf job, FileSystem fs)
throws IOException
{
TextInputFormat informat = new TextInputFormat();
informat.configure(job);
InputSplit[] splits = informat.getSplits(job, 1);
splits = IOUtilFunctions.sortInputSplits(splits);
//compute number of columns
int ncol = IOUtilFunctions.countNumColumnsCSV(splits, informat, job, _props.getDelim());
//compute number of rows
int nrow = 0;
for( int i=0; i<splits.length; i++ )
{
RecordReader<LongWritable, Text> reader = informat.getRecordReader(splits[i], job, Reporter.NULL);
LongWritable key = new LongWritable();
Text value = new Text();
try
{
//ignore header of first split
if( i==0 && _props.hasHeader() )
reader.next(key, value);
//count remaining number of rows, ignore meta data
while ( reader.next(key, value) ) {
String val = value.toString();
nrow += ( val.startsWith(TfUtils.TXMTD_MVPREFIX)
|| val.startsWith(TfUtils.TXMTD_NDPREFIX)) ? 0 : 1;
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
return new Pair<>(nrow, ncol);
}
@Override
public Object call() throws Exception {
LongWritable key = new LongWritable();
Text value = new Text();
try {
FastStringTokenizer st = new FastStringTokenizer(' ');
int[] ix = new int[_dest.getNumDims()];
RecordReader<LongWritable, Text> reader = _informat.getRecordReader(_split, _job, Reporter.NULL);
try {
while (reader.next(key, value)) {
st.reset(value.toString());
for (int i = 0; i < ix.length; i++) {
ix[i] = st.nextInt() - 1;
}
_dest.set(ix, st.nextToken());
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
catch (Exception ex) {
throw new IOException("Unable to read tensor in text cell format.", ex);
}
return null;
}
/**
* Dump given list of files to standard output as typed bytes.
*/
@SuppressWarnings("unchecked")
private int dumpTypedBytes(List<FileStatus> files) throws IOException {
JobConf job = new JobConf(getConf());
DataOutputStream dout = new DataOutputStream(System.out);
AutoInputFormat autoInputFormat = new AutoInputFormat();
for (FileStatus fileStatus : files) {
FileSplit split = new FileSplit(fileStatus.getPath(), 0,
fileStatus.getLen() * fileStatus.getBlockSize(),
(String[]) null);
RecordReader recReader = null;
try {
recReader = autoInputFormat.getRecordReader(split, job, Reporter.NULL);
Object key = recReader.createKey();
Object value = recReader.createValue();
while (recReader.next(key, value)) {
if (key instanceof Writable) {
TypedBytesWritableOutput.get(dout).write((Writable) key);
} else {
TypedBytesOutput.get(dout).write(key);
}
if (value instanceof Writable) {
TypedBytesWritableOutput.get(dout).write((Writable) value);
} else {
TypedBytesOutput.get(dout).write(value);
}
}
} finally {
if (recReader != null) {
recReader.close();
}
}
}
dout.flush();
return 0;
}
private static void mergeTextCellWithoutComp( String fnameNew, MatrixObject outMo, ArrayList<MatrixObject> inMO )
{
try
{
//delete target file if already exists
HDFSTool.deleteFileIfExistOnHDFS(fnameNew);
if( ALLOW_COPY_CELLFILES )
{
copyAllFiles(fnameNew, inMO);
return; //we're done
}
//actual merge
JobConf job = new JobConf(ConfigurationManager.getCachedJobConf());
Path path = new Path( fnameNew );
FileSystem fs = IOUtilFunctions.getFileSystem(path, job);
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(fs.create(path,true)));
String valueStr = null;
try
{
for( MatrixObject in : inMO ) //read/write all inputs
{
if( LOG.isTraceEnabled() )
LOG.trace("ResultMerge (local, file): Merge input "+in.hashCode()+" (fname="
+in.getFileName()+") via stream merge");
JobConf tmpJob = new JobConf(ConfigurationManager.getCachedJobConf());
Path tmpPath = new Path(in.getFileName());
FileInputFormat.addInputPath(tmpJob, tmpPath);
TextInputFormat informat = new TextInputFormat();
informat.configure(tmpJob);
InputSplit[] splits = informat.getSplits(tmpJob, 1);
LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split: splits)
{
RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, tmpJob, Reporter.NULL);
try
{
while(reader.next(key, value))
{
valueStr = value.toString().trim();
out.write( valueStr+"\n" );
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
}
}
finally {
IOUtilFunctions.closeSilently(out);
}
}
catch(Exception ex)
{
throw new DMLRuntimeException("Unable to merge text cell results.", ex);
}
}
private static void createTextCellStagingFile( String fnameStaging, MatrixObject mo, long ID )
throws IOException, DMLRuntimeException
{
JobConf job = new JobConf(ConfigurationManager.getCachedJobConf());
Path path = new Path(mo.getFileName());
FileInputFormat.addInputPath(job, path);
TextInputFormat informat = new TextInputFormat();
informat.configure(job);
InputSplit[] splits = informat.getSplits(job, 1);
LinkedList<Cell> buffer = new LinkedList<>();
LongWritable key = new LongWritable();
Text value = new Text();
DataCharacteristics mc = mo.getDataCharacteristics();
int blen = mc.getBlocksize();
//long row = -1, col = -1; //FIXME needs reconsideration whenever textcell is used actively
//NOTE MB: Originally, we used long row, col but this led reproducibly to JIT compilation
// errors during runtime; experienced under WINDOWS, Intel x86-64, IBM JDK 64bit/32bit.
// It works fine with int row, col but we require long for larger matrices.
// Since, textcell is never used for result merge (hybrid/hadoop: binaryblock, singlenode:binarycell)
// we just propose the to exclude it with -Xjit:exclude={package.method*}(count=0,optLevel=0)
FastStringTokenizer st = new FastStringTokenizer(' ');
for(InputSplit split : splits)
{
RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, job, Reporter.NULL);
try
{
while(reader.next(key, value))
{
st.reset( value.toString() ); //reset tokenizer
long row = st.nextLong();
long col = st.nextLong();
double lvalue = Double.parseDouble( st.nextToken() );
Cell tmp = new Cell( row, col, lvalue );
buffer.addLast( tmp );
if( buffer.size() > StagingFileUtils.CELL_BUFFER_SIZE ) //periodic flush
{
appendCellBufferToStagingArea(fnameStaging, ID, buffer, blen);
buffer.clear();
}
}
//final flush
if( !buffer.isEmpty() )
{
appendCellBufferToStagingArea(fnameStaging, ID, buffer, blen);
buffer.clear();
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
}
/**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
private MatrixBlock computeCSVSizeAndCreateOutputMatrixBlock(InputSplit[] splits, Path path,
JobConf job, boolean hasHeader, String delim, long rlen, long clen, long estnnz)
throws IOException, DMLRuntimeException
{
int nrow = 0;
int ncol = 0;
FileInputFormat.addInputPath(job, path);
TextInputFormat informat = new TextInputFormat();
informat.configure(job);
// count no of entities in the first non-header row
LongWritable key = new LongWritable();
Text oneLine = new Text();
RecordReader<LongWritable, Text> reader = informat
.getRecordReader(splits[0], job, Reporter.NULL);
try {
if (reader.next(key, oneLine)) {
String cellStr = oneLine.toString().trim();
ncol = StringUtils.countMatches(cellStr, delim) + 1;
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
// count rows in parallel per split
try
{
ExecutorService pool = CommonThreadPool.get(_numThreads);
ArrayList<CountRowsTask> tasks = new ArrayList<>();
for (InputSplit split : splits) {
tasks.add(new CountRowsTask(split, informat, job, hasHeader));
hasHeader = false;
}
List<Future<Long>> ret = pool.invokeAll(tasks);
pool.shutdown();
// collect row counts for offset computation
// early error notify in case not all tasks successful
_offsets = new SplitOffsetInfos(tasks.size());
for (Future<Long> rc : ret) {
int lnrow = (int)rc.get().longValue(); //incl error handling
_offsets.setOffsetPerSplit(ret.indexOf(rc), nrow);
_offsets.setLenghtPerSplit(ret.indexOf(rc), lnrow);
nrow = nrow + lnrow;
}
}
catch (Exception e) {
throw new IOException("Threadpool Error " + e.getMessage(), e);
}
//robustness for wrong dimensions which are already compiled into the plan
if( (rlen != -1 && nrow != rlen) || (clen != -1 && ncol != clen) ) {
String msg = "Read matrix dimensions differ from meta data: ["+nrow+"x"+ncol+"] vs. ["+rlen+"x"+clen+"].";
if( rlen < nrow || clen < ncol ) {
//a) specified matrix dimensions too small
throw new DMLRuntimeException(msg);
}
else {
//b) specified matrix dimensions too large -> padding and warning
LOG.warn(msg);
nrow = (int) rlen;
ncol = (int) clen;
}
}
// allocate target matrix block based on given size;
// need to allocate sparse as well since lock-free insert into target
long estnnz2 = (estnnz < 0) ? (long)nrow * ncol : estnnz;
return createOutputMatrixBlock(nrow, ncol, nrow, estnnz2, true, true);
}
@Test
@Disabled
public void testHoodieRealtimeCombineHoodieInputFormat() throws Exception {
Configuration conf = new Configuration();
// initial commit
Schema schema = HoodieAvroUtils.addMetadataFields(SchemaTestUtil.getEvolvedSchema());
HoodieTestUtils.init(hadoopConf, tempDir.toAbsolutePath().toString(), HoodieTableType.MERGE_ON_READ);
String commitTime = "100";
final int numRecords = 1000;
// Create 3 parquet files with 1000 records each
File partitionDir = InputFormatTestUtil.prepareParquetTable(tempDir, schema, 3, numRecords, commitTime);
InputFormatTestUtil.commit(tempDir, commitTime);
// insert 1000 update records to log file 0
String newCommitTime = "101";
HoodieLogFormat.Writer writer =
InputFormatTestUtil.writeDataBlockToLogFile(partitionDir, fs, schema, "fileid0", commitTime, newCommitTime,
numRecords, numRecords, 0);
writer.close();
// insert 1000 update records to log file 1
writer =
InputFormatTestUtil.writeDataBlockToLogFile(partitionDir, fs, schema, "fileid1", commitTime, newCommitTime,
numRecords, numRecords, 0);
writer.close();
// insert 1000 update records to log file 2
writer =
InputFormatTestUtil.writeDataBlockToLogFile(partitionDir, fs, schema, "fileid2", commitTime, newCommitTime,
numRecords, numRecords, 0);
writer.close();
TableDesc tblDesc = Utilities.defaultTd;
// Set the input format
tblDesc.setInputFileFormatClass(HoodieCombineHiveInputFormat.class);
PartitionDesc partDesc = new PartitionDesc(tblDesc, null);
LinkedHashMap<Path, PartitionDesc> pt = new LinkedHashMap<>();
pt.put(new Path(tempDir.toAbsolutePath().toString()), partDesc);
MapredWork mrwork = new MapredWork();
mrwork.getMapWork().setPathToPartitionInfo(pt);
Path mapWorkPath = new Path(tempDir.toAbsolutePath().toString());
Utilities.setMapRedWork(conf, mrwork, mapWorkPath);
jobConf = new JobConf(conf);
// Add the paths
FileInputFormat.setInputPaths(jobConf, partitionDir.getPath());
jobConf.set(HAS_MAP_WORK, "true");
// The following config tells Hive to choose ExecMapper to read the MAP_WORK
jobConf.set(MAPRED_MAPPER_CLASS, ExecMapper.class.getName());
// setting the split size to be 3 to create one split for 3 file groups
jobConf.set(org.apache.hadoop.mapreduce.lib.input.FileInputFormat.SPLIT_MAXSIZE, "3");
HoodieCombineHiveInputFormat combineHiveInputFormat = new HoodieCombineHiveInputFormat();
String tripsHiveColumnTypes = "double,string,string,string,double,double,double,double,double";
InputFormatTestUtil.setPropsForInputFormat(jobConf, schema, tripsHiveColumnTypes);
InputSplit[] splits = combineHiveInputFormat.getSplits(jobConf, 1);
// Since the SPLIT_SIZE is 3, we should create only 1 split with all 3 file groups
assertEquals(1, splits.length);
RecordReader<NullWritable, ArrayWritable> recordReader =
combineHiveInputFormat.getRecordReader(splits[0], jobConf, null);
NullWritable nullWritable = recordReader.createKey();
ArrayWritable arrayWritable = recordReader.createValue();
int counter = 0;
while (recordReader.next(nullWritable, arrayWritable)) {
// read over all the splits
counter++;
}
// should read out 3 splits, each for file0, file1, file2 containing 1000 records each
assertEquals(3000, counter);
}
public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,
Reporter reporter)
throws IOException {
try {
// allocate key & value instances these objects will not be reused
// because execution of Mapper.map is not serialized.
K1 key = input.createKey();
V1 value = input.createValue();
while (input.next(key, value)) {
executorService.execute(new MapperInvokeRunable(key, value, output,
reporter));
checkForExceptionsFromProcessingThreads();
// Allocate new key & value instances as mapper is running in parallel
key = input.createKey();
value = input.createValue();
}
if (LOG.isDebugEnabled()) {
LOG.debug("Finished dispatching all Mappper.map calls, job "
+ job.getJobName());
}
// Graceful shutdown of the Threadpool, it will let all scheduled
// Runnables to end.
executorService.shutdown();
try {
// Now waiting for all Runnables to end.
while (!executorService.awaitTermination(100, TimeUnit.MILLISECONDS)) {
if (LOG.isDebugEnabled()) {
LOG.debug("Awaiting all running Mappper.map calls to finish, job "
+ job.getJobName());
}
// NOTE: while Mapper.map dispatching has concluded there are still
// map calls in progress and exceptions would be thrown.
checkForExceptionsFromProcessingThreads();
}
// NOTE: it could be that a map call has had an exception after the
// call for awaitTermination() returing true. And edge case but it
// could happen.
checkForExceptionsFromProcessingThreads();
} catch (IOException ioEx) {
// Forcing a shutdown of all thread of the threadpool and rethrowing
// the IOException
executorService.shutdownNow();
throw ioEx;
} catch (InterruptedException iEx) {
throw new RuntimeException(iEx);
}
} finally {
mapper.close();
}
}
@Override
public int populateData() throws IOException, SerDeException {
final SkipRecordsInspector skipRecordsInspector = this.skipRecordsInspector;
final RecordReader<Object, Object> reader = this.reader;
final Converter partTblObjectInspectorConverter = this.partTblObjectInspectorConverter;
final Object key = this.key;
final int numRowsPerBatch = (int) this.numRowsPerBatch;
final StructField[] selectedStructFieldRefs = this.selectedStructFieldRefs;
final SerDe partitionSerDe = this.partitionSerDe;
final StructObjectInspector finalOI = this.finalOI;
final ObjectInspector[] selectedColumnObjInspectors = this.selectedColumnObjInspectors;
final HiveFieldConverter[] selectedColumnFieldConverters = this.selectedColumnFieldConverters;
final ValueVector[] vectors = this.vectors;
skipRecordsInspector.reset();
Object value;
int recordCount = 0;
while (recordCount < numRowsPerBatch) {
try (OperatorStats.WaitRecorder recorder = OperatorStats.getWaitRecorder(this.context.getStats())) {
boolean hasNext = reader.next(key, value = skipRecordsInspector.getNextValue());
if (!hasNext) {
break;
}
}
catch(FSError e) {
throw HadoopFileSystemWrapper.propagateFSError(e);
}
if (skipRecordsInspector.doSkipHeader(recordCount++)) {
continue;
}
Object bufferedValue = skipRecordsInspector.bufferAdd(value);
if (bufferedValue != null) {
Object deSerializedValue = partitionSerDe.deserialize((Writable) bufferedValue);
if (partTblObjectInspectorConverter != null) {
deSerializedValue = partTblObjectInspectorConverter.convert(deSerializedValue);
}
for (int i = 0; i < selectedStructFieldRefs.length; i++) {
Object hiveValue = finalOI.getStructFieldData(deSerializedValue, selectedStructFieldRefs[i]);
if (hiveValue != null) {
selectedColumnFieldConverters[i].setSafeValue(selectedColumnObjInspectors[i], hiveValue, vectors[i], skipRecordsInspector.getActualCount());
}
}
skipRecordsInspector.incrementActualCount();
}
skipRecordsInspector.incrementTempCount();
}
for (int i = 0; i < selectedStructFieldRefs.length; i++) {
vectors[i].setValueCount(skipRecordsInspector.getActualCount());
}
skipRecordsInspector.updateContinuance();
return skipRecordsInspector.getActualCount();
}
protected final int readCSVFrameFromInputSplit( InputSplit split, InputFormat<LongWritable,Text> informat, JobConf job,
FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen, int rl, boolean first)
throws IOException
{
boolean hasHeader = _props.hasHeader();
boolean isFill = _props.isFill();
double dfillValue = _props.getFillValue();
String sfillValue = String.valueOf(_props.getFillValue());
String delim = _props.getDelim();
//create record reader
RecordReader<LongWritable, Text> reader = informat.getRecordReader(split, job, Reporter.NULL);
LongWritable key = new LongWritable();
Text value = new Text();
int row = rl;
int col = -1;
//handle header if existing
if(first && hasHeader ) {
reader.next(key, value); //read header
dest.setColumnNames(value.toString().split(delim));
}
// Read the data
boolean emptyValuesFound = false;
try
{
while( reader.next(key, value) ) //foreach line
{
String cellStr = value.toString().trim();
emptyValuesFound = false; col = 0;
String[] parts = IOUtilFunctions.splitCSV(cellStr, delim);
//parse frame meta data (missing values / num distinct)
if( parts[0].equals(TfUtils.TXMTD_MVPREFIX) || parts[0].equals(TfUtils.TXMTD_NDPREFIX) ) {
if( parts[0].equals(TfUtils.TXMTD_MVPREFIX) )
for( int j=0; j<dest.getNumColumns(); j++ )
dest.getColumnMetadata(j).setMvValue(parts[j+1]);
else if( parts[0].equals(TfUtils.TXMTD_NDPREFIX) )
for( int j=0; j<dest.getNumColumns(); j++ )
dest.getColumnMetadata(j).setNumDistinct(Long.parseLong(parts[j+1]));
continue;
}
for( String part : parts ) //foreach cell
{
part = part.trim();
if ( part.isEmpty() ) {
if( isFill && dfillValue!=0 )
dest.set(row, col, UtilFunctions.stringToObject(schema[col], sfillValue));
emptyValuesFound = true;
}
else {
dest.set(row, col, UtilFunctions.stringToObject(schema[col], part));
}
col++;
}
//sanity checks for empty values and number of columns
IOUtilFunctions.checkAndRaiseErrorCSVEmptyField(cellStr, isFill, emptyValuesFound);
IOUtilFunctions.checkAndRaiseErrorCSVNumColumns("", cellStr, parts, clen);
row++;
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
return row;
}
protected void readTextCellMatrixFromHDFS( Path path, JobConf job, MatrixBlock dest, long rlen, long clen, int blen )
throws IOException
{
boolean sparse = dest.isInSparseFormat();
FileInputFormat.addInputPath(job, path);
TextInputFormat informat = new TextInputFormat();
informat.configure(job);
InputSplit[] splits = informat.getSplits(job, 1);
LongWritable key = new LongWritable();
Text value = new Text();
IJV cell = new IJV();
long nnz = 0;
try
{
FastStringTokenizer st = new FastStringTokenizer(' ');
for(InputSplit split: splits) {
RecordReader<LongWritable,Text> reader = informat.getRecordReader(split, job, Reporter.NULL);
try {
if( sparse ) { //SPARSE<-value
while( reader.next(key, value) ) {
cell = parseCell(value.toString(), st, cell, _mmProps);
appendCell(cell, dest, _mmProps);
}
dest.sortSparseRows();
}
else { //DENSE<-value
DenseBlock a = dest.getDenseBlock();
while( reader.next(key, value) ) {
cell = parseCell(value.toString(), st, cell, _mmProps);
nnz += appendCell(cell, a, _mmProps);
}
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
if( !dest.isInSparseFormat() )
dest.setNonZeros(nnz);
}
catch(Exception ex) {
//post-mortem error handling and bounds checking
if( cell.getI() < 0 || cell.getI() + 1 > rlen || cell.getJ() < 0 || cell.getJ() + 1 > clen )
throw new IOException("Matrix cell ["+(cell.getI()+1)+","+(cell.getJ()+1)+"] "
+ "out of overall matrix range [1:"+rlen+",1:"+clen+"].");
else
throw new IOException( "Unable to read matrix in text cell format.", ex );
}
}
public void testEventInputFormat() throws Exception {
getConnection();
Connection conn = startNetserverAndGetLocalNetConnection();
Statement st = conn.createStatement();
st.execute("create hdfsstore myhdfs namenode 'localhost' homedir '" + HDFS_DIR + "' batchtimeinterval 5000 milliseconds");
st.execute("create table app.mytab1 (col1 int primary key, col2 varchar(100)) persistent hdfsstore (myhdfs) BUCKETS 1");
PreparedStatement ps = conn.prepareStatement("insert into mytab1 values (?, ?)");
int NUM_ENTRIES = 20;
for(int i = 0; i < NUM_ENTRIES; i++) {
ps.setInt(1, i);
ps.setString(2, "Value-" + System.nanoTime());
ps.execute();
}
//Wait for data to get to HDFS...
String qname = HDFSStoreFactoryImpl.getEventQueueName("/APP/MYTAB1");
st.execute("CALL SYS.WAIT_FOR_SENDER_QUEUE_FLUSH('" + qname + "', 1, 0)");
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
FileStatus[] list = fs.listStatus(new Path(HDFS_DIR + "/APP_MYTAB1/0/"));
assertEquals(1, list.length);
conf.set(RowInputFormat.INPUT_TABLE, "MYTAB1");
conf.set(RowInputFormat.HOME_DIR, HDFS_DIR);
JobConf job = new JobConf(conf);
job.setBoolean(RowInputFormat.CHECKPOINT_MODE, false);
RowInputFormat ipformat = new RowInputFormat();
InputSplit[] splits = ipformat.getSplits(job, 2);
assertEquals(1, splits.length);
CombineFileSplit split = (CombineFileSplit) splits[0];
assertEquals(1, split.getPaths().length);
assertEquals(list[0].getPath().toString(), split.getPath(0).toString());
assertEquals(0, split.getOffset(0));
assertEquals(list[0].getLen(), split.getLength(0));
RecordReader<Key, Row> rr = ipformat.getRecordReader(split, job, null);
Key key = rr.createKey();
Row value = rr.createValue();
int count = 0;
while (rr.next(key, value)) {
assertEquals(count++, value.getRowAsResultSet().getInt("col1"));
}
assertEquals(20, count);
TestUtil.shutDown();
}
@Override
public Object call()
throws Exception
{
long lnnz = 0;
try
{
RecordReader<LongWritable, Text> reader = _informat.getRecordReader(_split, _job, Reporter.NULL);
LongWritable key = new LongWritable();
Text value = new Text();
SparseRowVector vect = new SparseRowVector(1024);
int row = _splitoffsets.getOffsetPerSplit(_splitCount);
try {
while (reader.next(key, value)) { // foreach line
String rowStr = value.toString().trim();
lnnz += ReaderTextLIBSVM.parseLibsvmRow(rowStr, vect, (int)_clen);
_dest.appendRow(row, vect);
row++;
}
// sanity checks (number of rows)
if (row != (_splitoffsets.getOffsetPerSplit(_splitCount) + _splitoffsets.getLenghtPerSplit(_splitCount)) ) {
throw new IOException("Incorrect number of rows ("+ row+ ") found in delimited file ("
+ (_splitoffsets.getOffsetPerSplit(_splitCount)
+ _splitoffsets.getLenghtPerSplit(_splitCount))+ "): " + value);
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
}
catch (Exception ex) {
// central error handling (return code, message)
_rc = false;
_exception = ex;
}
//post processing
_nnz = lnnz;
return null;
}
/**
* Run the map task.
* @param input the set of inputs
* @param output the object to collect the outputs of the map
* @param reporter the object to update with status
*/
@SuppressWarnings("unchecked")
public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,
Reporter reporter) throws IOException {
Application<K1, V1, K2, V2> application = null;
try {
RecordReader<FloatWritable, NullWritable> fakeInput =
(!Submitter.getIsJavaRecordReader(job) &&
!Submitter.getIsJavaMapper(job)) ?
(RecordReader<FloatWritable, NullWritable>) input : null;
application = new Application<K1, V1, K2, V2>(job, fakeInput, output,
reporter,
(Class<? extends K2>) job.getOutputKeyClass(),
(Class<? extends V2>) job.getOutputValueClass());
} catch (InterruptedException ie) {
throw new RuntimeException("interrupted", ie);
}
DownwardProtocol<K1, V1> downlink = application.getDownlink();
boolean isJavaInput = Submitter.getIsJavaRecordReader(job);
downlink.runMap(reporter.getInputSplit(),
job.getNumReduceTasks(), isJavaInput);
boolean skipping = job.getBoolean(MRJobConfig.SKIP_RECORDS, false);
try {
if (isJavaInput) {
// allocate key & value instances that are re-used for all entries
K1 key = input.createKey();
V1 value = input.createValue();
downlink.setInputTypes(key.getClass().getName(),
value.getClass().getName());
while (input.next(key, value)) {
// map pair to output
downlink.mapItem(key, value);
if(skipping) {
//flush the streams on every record input if running in skip mode
//so that we don't buffer other records surrounding a bad record.
downlink.flush();
}
}
downlink.endOfInput();
}
application.waitForFinish();
} catch (Throwable t) {
application.abort(t);
} finally {
application.cleanup();
}
}
public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,
Reporter reporter)
throws IOException {
try {
// allocate key & value instances these objects will not be reused
// because execution of Mapper.map is not serialized.
K1 key = input.createKey();
V1 value = input.createValue();
while (input.next(key, value)) {
executorService.execute(new MapperInvokeRunable(key, value, output,
reporter));
checkForExceptionsFromProcessingThreads();
// Allocate new key & value instances as mapper is running in parallel
key = input.createKey();
value = input.createValue();
}
if (LOG.isDebugEnabled()) {
LOG.debug("Finished dispatching all Mappper.map calls, job "
+ job.getJobName());
}
// Graceful shutdown of the Threadpool, it will let all scheduled
// Runnables to end.
executorService.shutdown();
try {
// Now waiting for all Runnables to end.
while (!executorService.awaitTermination(100, TimeUnit.MILLISECONDS)) {
if (LOG.isDebugEnabled()) {
LOG.debug("Awaiting all running Mappper.map calls to finish, job "
+ job.getJobName());
}
// NOTE: while Mapper.map dispatching has concluded there are still
// map calls in progress and exceptions would be thrown.
checkForExceptionsFromProcessingThreads();
}
// NOTE: it could be that a map call has had an exception after the
// call for awaitTermination() returing true. And edge case but it
// could happen.
checkForExceptionsFromProcessingThreads();
} catch (IOException ioEx) {
// Forcing a shutdown of all thread of the threadpool and rethrowing
// the IOException
executorService.shutdownNow();
throw ioEx;
} catch (InterruptedException iEx) {
throw new RuntimeException(iEx);
}
} finally {
mapper.close();
}
}