下面列出了org.apache.hadoop.mapred.InputFormat#getRecordReader ( ) 实例代码,或者点击链接到github查看源代码,也可以在右侧发表评论。
/**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* Counts the number of columns in a given collection of csv file splits. This primitive aborts
* if a row with more than 0 columns is found and hence is robust against empty file splits etc.
*
* @param splits input splits
* @param informat input format
* @param job job configruation
* @param delim delimiter
* @return the number of columns in the collection of csv file splits
* @throws IOException if IOException occurs
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
public static int countNumColumnsCSV(InputSplit[] splits, InputFormat informat, JobConf job, String delim )
throws IOException
{
LongWritable key = new LongWritable();
Text value = new Text();
int ncol = -1;
for( int i=0; i<splits.length && ncol<=0; i++ ) {
RecordReader<LongWritable, Text> reader =
informat.getRecordReader(splits[i], job, Reporter.NULL);
try {
if( reader.next(key, value) ) {
boolean hasValue = true;
if( value.toString().startsWith(TfUtils.TXMTD_MVPREFIX) )
hasValue = reader.next(key, value);
if( value.toString().startsWith(TfUtils.TXMTD_NDPREFIX) )
hasValue = reader.next(key, value);
String row = value.toString().trim();
if( hasValue && !row.isEmpty() ) {
ncol = IOUtilFunctions.countTokensCSV(row, delim);
}
}
}
finally {
closeSilently(reader);
}
}
return ncol;
}
@SuppressWarnings("unchecked")
public RecordReader<K, V> getRecordReader(InputSplit split, JobConf conf,
Reporter reporter) throws IOException {
// Find the InputFormat and then the RecordReader from the
// TaggedInputSplit.
TaggedInputSplit taggedInputSplit = (TaggedInputSplit) split;
InputFormat<K, V> inputFormat = (InputFormat<K, V>) ReflectionUtils
.newInstance(taggedInputSplit.getInputFormatClass(), conf);
return inputFormat.getRecordReader(taggedInputSplit.getInputSplit(), conf,
reporter);
}
@SuppressWarnings("unchecked")
public RecordReader<K, V> getRecordReader(InputSplit split, JobConf conf,
Reporter reporter) throws IOException {
// Find the InputFormat and then the RecordReader from the
// TaggedInputSplit.
TaggedInputSplit taggedInputSplit = (TaggedInputSplit) split;
InputFormat<K, V> inputFormat = (InputFormat<K, V>) ReflectionUtils
.newInstance(taggedInputSplit.getInputFormatClass(), conf);
return inputFormat.getRecordReader(taggedInputSplit.getInputSplit(), conf,
reporter);
}
private static List<Text> readSplit(InputFormat<LongWritable,Text> format,
InputSplit split,
JobConf job) throws IOException {
List<Text> result = new ArrayList<Text>();
RecordReader<LongWritable, Text> reader =
format.getRecordReader(split, job, voidReporter);
LongWritable key = reader.createKey();
Text value = reader.createValue();
while (reader.next(key, value)) {
result.add(value);
value = reader.createValue();
}
reader.close();
return result;
}
@SuppressWarnings("unchecked")
public RecordReader<K, V> getRecordReader(InputSplit split, JobConf conf,
Reporter reporter) throws IOException {
// Find the InputFormat and then the RecordReader from the
// TaggedInputSplit.
TaggedInputSplit taggedInputSplit = (TaggedInputSplit) split;
InputFormat<K, V> inputFormat = (InputFormat<K, V>) ReflectionUtils
.newInstance(taggedInputSplit.getInputFormatClass(), conf);
return inputFormat.getRecordReader(taggedInputSplit.getInputSplit(), conf,
reporter);
}
@Test
public void testEmptyFile() throws Exception {
JobConf job = new JobConf(conf);
Properties properties = new Properties();
HiveOutputFormat<?, ?> outFormat = new OrcOutputFormat();
FileSinkOperator.RecordWriter writer =
outFormat.getHiveRecordWriter(conf, testFilePath, MyRow.class, true,
properties, Reporter.NULL);
writer.close(true);
properties.setProperty("columns", "x,y");
properties.setProperty("columns.types", "int:int");
SerDe serde = new OrcSerde();
serde.initialize(conf, properties);
InputFormat<?,?> in = new OrcInputFormat();
FileInputFormat.setInputPaths(conf, testFilePath.toString());
InputSplit[] splits = in.getSplits(conf, 1);
assertEquals(1, splits.length);
// read the whole file
conf.set("hive.io.file.readcolumn.ids", "0,1");
org.apache.hadoop.mapred.RecordReader reader =
in.getRecordReader(splits[0], conf, Reporter.NULL);
Object key = reader.createKey();
Object value = reader.createValue();
assertEquals(0.0, reader.getProgress(), 0.00001);
assertEquals(0, reader.getPos());
assertEquals(false, reader.next(key, value));
reader.close();
assertEquals(null, serde.getSerDeStats());
}
@SuppressWarnings("unchecked")
public RecordReader<K, V> getRecordReader(InputSplit split, JobConf conf,
Reporter reporter) throws IOException {
// Find the InputFormat and then the RecordReader from the
// TaggedInputSplit.
TaggedInputSplit taggedInputSplit = (TaggedInputSplit) split;
InputFormat<K, V> inputFormat = (InputFormat<K, V>) ReflectionUtils
.newInstance(taggedInputSplit.getInputFormatClass(), conf);
return inputFormat.getRecordReader(taggedInputSplit.getInputSplit(), conf,
reporter);
}
public static RecordReader<?, ?> createRecordReader(Configuration configuration, Path path, long start, long length, Properties schema, List<HiveColumnHandle> columns)
{
// determine which hive columns we will read
List<HiveColumnHandle> readColumns = columns.stream()
.filter(column -> column.getColumnType() == REGULAR)
.collect(toImmutableList());
// Projected columns are not supported here
readColumns.forEach(readColumn -> checkArgument(readColumn.isBaseColumn(), "column %s is not a base column", readColumn.getName()));
List<Integer> readHiveColumnIndexes = readColumns.stream()
.map(HiveColumnHandle::getBaseHiveColumnIndex)
.collect(toImmutableList());
// Tell hive the columns we would like to read, this lets hive optimize reading column oriented files
configuration = copy(configuration);
setReadColumns(configuration, readHiveColumnIndexes);
InputFormat<?, ?> inputFormat = getInputFormat(configuration, schema, true);
JobConf jobConf = toJobConf(configuration);
FileSplit fileSplit = new FileSplit(path, start, length, (String[]) null);
// propagate serialization configuration to getRecordReader
schema.stringPropertyNames().stream()
.filter(name -> name.startsWith("serialization."))
.forEach(name -> jobConf.set(name, schema.getProperty(name)));
configureCompressionCodecs(jobConf);
try {
RecordReader<WritableComparable, Writable> recordReader = (RecordReader<WritableComparable, Writable>) inputFormat.getRecordReader(fileSplit, jobConf, Reporter.NULL);
int headerCount = getHeaderCount(schema);
if (headerCount > 0) {
Utilities.skipHeader(recordReader, headerCount, recordReader.createKey(), recordReader.createValue());
}
int footerCount = getFooterCount(schema);
if (footerCount > 0) {
recordReader = new FooterAwareRecordReader<>(recordReader, footerCount, jobConf);
}
return recordReader;
}
catch (IOException e) {
if (e instanceof TextLineLengthLimitExceededException) {
throw new PrestoException(HIVE_BAD_DATA, "Line too long in text file: " + path, e);
}
throw new PrestoException(HIVE_CANNOT_OPEN_SPLIT, format("Error opening Hive split %s (offset=%s, length=%s) using %s: %s",
path,
start,
length,
getInputFormatName(schema),
firstNonNull(e.getMessage(), e.getClass().getName())),
e);
}
}
/**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
/**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
protected final int readCSVFrameFromInputSplit( InputSplit split, InputFormat<LongWritable,Text> informat, JobConf job,
FrameBlock dest, ValueType[] schema, String[] names, long rlen, long clen, int rl, boolean first)
throws IOException
{
boolean hasHeader = _props.hasHeader();
boolean isFill = _props.isFill();
double dfillValue = _props.getFillValue();
String sfillValue = String.valueOf(_props.getFillValue());
String delim = _props.getDelim();
//create record reader
RecordReader<LongWritable, Text> reader = informat.getRecordReader(split, job, Reporter.NULL);
LongWritable key = new LongWritable();
Text value = new Text();
int row = rl;
int col = -1;
//handle header if existing
if(first && hasHeader ) {
reader.next(key, value); //read header
dest.setColumnNames(value.toString().split(delim));
}
// Read the data
boolean emptyValuesFound = false;
try
{
while( reader.next(key, value) ) //foreach line
{
String cellStr = value.toString().trim();
emptyValuesFound = false; col = 0;
String[] parts = IOUtilFunctions.splitCSV(cellStr, delim);
//parse frame meta data (missing values / num distinct)
if( parts[0].equals(TfUtils.TXMTD_MVPREFIX) || parts[0].equals(TfUtils.TXMTD_NDPREFIX) ) {
if( parts[0].equals(TfUtils.TXMTD_MVPREFIX) )
for( int j=0; j<dest.getNumColumns(); j++ )
dest.getColumnMetadata(j).setMvValue(parts[j+1]);
else if( parts[0].equals(TfUtils.TXMTD_NDPREFIX) )
for( int j=0; j<dest.getNumColumns(); j++ )
dest.getColumnMetadata(j).setNumDistinct(Long.parseLong(parts[j+1]));
continue;
}
for( String part : parts ) //foreach cell
{
part = part.trim();
if ( part.isEmpty() ) {
if( isFill && dfillValue!=0 )
dest.set(row, col, UtilFunctions.stringToObject(schema[col], sfillValue));
emptyValuesFound = true;
}
else {
dest.set(row, col, UtilFunctions.stringToObject(schema[col], part));
}
col++;
}
//sanity checks for empty values and number of columns
IOUtilFunctions.checkAndRaiseErrorCSVEmptyField(cellStr, isFill, emptyValuesFound);
IOUtilFunctions.checkAndRaiseErrorCSVNumColumns("", cellStr, parts, clen);
row++;
}
}
finally {
IOUtilFunctions.closeSilently(reader);
}
return row;
}
/**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}