下面列出了java.util.function.UnaryOperator#apply ( ) 实例代码,或者点击链接到github查看源代码,也可以在右侧发表评论。
private static <T, S extends Spliterator<T>> void testTryAdvance(
Collection<T> exp,
Supplier<S> supplier,
UnaryOperator<Consumer<T>> boxingAdapter) {
S spliterator = supplier.get();
long sizeIfKnown = spliterator.getExactSizeIfKnown();
boolean isOrdered = spliterator.hasCharacteristics(Spliterator.ORDERED);
spliterator = supplier.get();
ArrayList<T> fromTryAdvance = new ArrayList<>();
Consumer<T> addToFromTryAdvance = boxingAdapter.apply(fromTryAdvance::add);
while (spliterator.tryAdvance(addToFromTryAdvance)) { }
// Assert that forEach now produces no elements
spliterator.forEachRemaining(boxingAdapter.apply(e -> fail("Spliterator.forEach produced an element after spliterator exhausted: " + e)));
// Assert that tryAdvance now produce no elements
spliterator.tryAdvance(boxingAdapter.apply(e -> fail("Spliterator.tryAdvance produced an element after spliterator exhausted: " + e)));
// assert that size, tryAdvance, and forEach are consistent
if (sizeIfKnown >= 0) {
assertEquals(sizeIfKnown, exp.size());
}
assertEquals(fromTryAdvance.size(), exp.size());
assertContents(fromTryAdvance, exp, isOrdered);
}
/**
* Returns an infinite sequential ordered {@code Stream} produced by iterative
* application of a function {@code f} to an initial element {@code seed},
* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
* {@code f(f(seed))}, etc.
*
* <p>The first element (position {@code 0}) in the {@code Stream} will be
* the provided {@code seed}. For {@code n > 0}, the element at position
* {@code n}, will be the result of applying the function {@code f} to the
* element at position {@code n - 1}.
*
* @param <T> the type of stream elements
* @param seed the initial element
* @param f a function to be applied to the previous element to produce
* a new element
* @return a new sequential {@code Stream}
*/
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
Objects.requireNonNull(f);
final Iterator<T> iterator = new Iterator<T>() {
@SuppressWarnings("unchecked")
T t = (T) Streams.NONE;
@Override
public boolean hasNext() {
return true;
}
@Override
public T next() {
return t = (t == Streams.NONE) ? seed : f.apply(t);
}
};
return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator,
Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
}
@Nonnull
@Override
public Catnip injectOptions(@Nonnull final Extension extension, @Nonnull final UnaryOperator<CatnipOptions> optionsPatcher) {
if(!extensionManager.matchingExtensions(extension.getClass()).isEmpty()) {
final CatnipOptions patchedOptions = optionsPatcher.apply((CatnipOptions) options.clone());
final Map<String, Pair<Object, Object>> diff = diff(patchedOptions);
if(!diff.isEmpty()) {
sanityCheckOptions(patchedOptions);
options = patchedOptions;
injectSelf();
if(logExtensionOverrides) {
diff.forEach((name, patch) -> logAdapter().info("Extension {} updated {} from \"{}\" to \"{}\".",
extension.name(), name, patch.getLeft(), patch.getRight()));
}
}
} else {
throw new IllegalArgumentException("Extension with class " + extension.getClass().getName()
+ " isn't loaded, but tried to inject options!");
}
return this;
}
/**
* Returns an infinite sequential ordered {@code Stream} produced by iterative
* application of a function {@code f} to an initial element {@code seed},
* producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
* {@code f(f(seed))}, etc.
*
* <p>The first element (position {@code 0}) in the {@code Stream} will be
* the provided {@code seed}. For {@code n > 0}, the element at position
* {@code n}, will be the result of applying the function {@code f} to the
* element at position {@code n - 1}.
*
* <p>The action of applying {@code f} for one element
* <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
* the action of applying {@code f} for subsequent elements. For any given
* element the action may be performed in whatever thread the library
* chooses.
*
* @param <T> the type of stream elements
* @param seed the initial element
* @param f a function to be applied to the previous element to produce
* a new element
* @return a new sequential {@code Stream}
*/
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
Objects.requireNonNull(f);
Spliterator<T> spliterator = new Spliterators.AbstractSpliterator<>(Long.MAX_VALUE,
Spliterator.ORDERED | Spliterator.IMMUTABLE) {
T prev;
boolean started;
@Override
public boolean tryAdvance(Consumer<? super T> action) {
Objects.requireNonNull(action);
T t;
if (started)
t = f.apply(prev);
else {
t = seed;
started = true;
}
action.accept(prev = t);
return true;
}
};
return StreamSupport.stream(spliterator, false);
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
Frame replaceAll(UnaryOperator<Expression> op) {
Map<Variable, Expression> res = null;
for (Entry<Variable, Expression> e : sources.entrySet()) {
Expression expr = op.apply(e.getValue());
if (expr != e.getValue()) {
if (res == null)
res = new IdentityHashMap<>(sources);
res.put(e.getKey(), expr);
}
}
return res == null ? this : new Frame(this, res, this.fieldValues);
}
private static <T, S extends Spliterator<T>> void testForEach(
Collection<T> exp,
Supplier<S> supplier,
UnaryOperator<Consumer<T>> boxingAdapter) {
S spliterator = supplier.get();
long sizeIfKnown = spliterator.getExactSizeIfKnown();
boolean isOrdered = spliterator.hasCharacteristics(Spliterator.ORDERED);
ArrayList<T> fromForEach = new ArrayList<>();
spliterator = supplier.get();
Consumer<T> addToFromForEach = boxingAdapter.apply(fromForEach::add);
spliterator.forEachRemaining(addToFromForEach);
// Assert that forEach now produces no elements
spliterator.forEachRemaining(boxingAdapter.apply(e -> fail("Spliterator.forEach produced an element after spliterator exhausted: " + e)));
// Assert that tryAdvance now produce no elements
spliterator.tryAdvance(boxingAdapter.apply(e -> fail("Spliterator.tryAdvance produced an element after spliterator exhausted: " + e)));
// assert that size, tryAdvance, and forEach are consistent
if (sizeIfKnown >= 0) {
assertEquals(sizeIfKnown, exp.size());
}
if (exp.contains(null)) {
assertTrue(fromForEach.contains(null));
}
assertEquals(fromForEach.size(), exp.size());
assertContents(fromForEach, exp, isOrdered);
}
private static <T, S extends Spliterator<T>> void testMixedTryAdvanceForEach(
Collection<T> exp,
Supplier<S> supplier,
UnaryOperator<Consumer<T>> boxingAdapter) {
S spliterator = supplier.get();
long sizeIfKnown = spliterator.getExactSizeIfKnown();
boolean isOrdered = spliterator.hasCharacteristics(Spliterator.ORDERED);
// tryAdvance first few elements, then forEach rest
ArrayList<T> dest = new ArrayList<>();
spliterator = supplier.get();
Consumer<T> addToDest = boxingAdapter.apply(dest::add);
for (int i = 0; i < 10 && spliterator.tryAdvance(addToDest); i++) { }
spliterator.forEachRemaining(addToDest);
// Assert that forEach now produces no elements
spliterator.forEachRemaining(boxingAdapter.apply(e -> fail("Spliterator.forEach produced an element after spliterator exhausted: " + e)));
// Assert that tryAdvance now produce no elements
spliterator.tryAdvance(boxingAdapter.apply(e -> fail("Spliterator.tryAdvance produced an element after spliterator exhausted: " + e)));
if (sizeIfKnown >= 0) {
assertEquals(sizeIfKnown, dest.size());
}
assertEquals(dest.size(), exp.size());
if (isOrdered) {
assertEquals(dest, exp);
}
else {
assertContentsUnordered(dest, exp);
}
}
void replaceAll(UnaryOperator<E> operator, int i, int end) {
// assert Thread.holdsLock(lock);
final Object[] es = getArray().clone();
for (; i < end; i++)
es[i] = operator.apply(elementAt(es, i));
setArray(es);
}
@SuppressWarnings({"rawtypes", "unchecked"})
@Test(dataProvider = "StreamTestData<Integer>", dataProviderClass = StreamTestDataProvider.class)
public void testMixedSeqPar(String name, TestData.OfRef<Integer> data) {
Function<Integer, Integer> id = LambdaTestHelpers.identity();
UnaryOperator<Stream<Integer>>[] changers
= new UnaryOperator[] {
(UnaryOperator<Stream<Integer>>) s -> s,
(UnaryOperator<Stream<Integer>>) s -> s.sequential(),
(UnaryOperator<Stream<Integer>>) s -> s.parallel(),
(UnaryOperator<Stream<Integer>>) s -> s.unordered()
};
UnaryOperator<Stream<Integer>>[] stuff
= new UnaryOperator[] {
(UnaryOperator<Stream<Integer>>) s -> s,
(UnaryOperator<Stream<Integer>>) s -> s.map(id),
(UnaryOperator<Stream<Integer>>) s -> s.sorted(Comparator.naturalOrder()),
(UnaryOperator<Stream<Integer>>) s -> s.map(id).sorted(Comparator.naturalOrder()).map(id),
(UnaryOperator<Stream<Integer>>) s -> s.filter(LambdaTestHelpers.pEven).sorted(Comparator.naturalOrder()).map(id),
};
for (int c1Index = 0; c1Index < changers.length; c1Index++) {
setContext("c1Index", c1Index);
UnaryOperator<Stream<Integer>> c1 = changers[c1Index];
for (int s1Index = 0; s1Index < stuff.length; s1Index++) {
setContext("s1Index", s1Index);
UnaryOperator<Stream<Integer>> s1 = stuff[s1Index];
for (int c2Index = 0; c2Index < changers.length; c2Index++) {
setContext("c2Index", c2Index);
UnaryOperator<Stream<Integer>> c2 = changers[c2Index];
for (int s2Index = 0; s2Index < stuff.length; s2Index++) {
setContext("s2Index", s2Index);
UnaryOperator<Stream<Integer>> s2 = stuff[s2Index];
UnaryOperator<Stream<Integer>> composed = s -> s2.apply(c2.apply(s1.apply(c1.apply(s))));
exerciseOps(data, composed);
}
}
}
}
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
private static String getEscapedJsonString(final String javaString) {
final UnaryOperator<String> javaStringToEscapeJsonString = JavaStringToEscapedJsonString.getInstance();
return javaStringToEscapeJsonString.apply(javaString);
}
@Override
public void synchronizeDataCollectors(UnaryOperator<ReductionDataCollector<?>> sync) {
collector = (DoubleMaxCollector)sync.apply(collector);
}
@Override
public ReactiveFetcher<T> changeQuery(UnaryOperator<Query> mapFn) {
return new ReactiveFetcherDelegate<>(mapFn.apply(query), session);
}
/**
* Obtains a {@code TemporalAdjuster} that wraps a date adjuster.
* <p>
* The {@code TemporalAdjuster} is based on the low level {@code Temporal} interface.
* This method allows an adjustment from {@code LocalDate} to {@code LocalDate}
* to be wrapped to match the temporal-based interface.
* This is provided for convenience to make user-written adjusters simpler.
* <p>
* In general, user-written adjusters should be static constants:
* <pre>{@code
* static TemporalAdjuster TWO_DAYS_LATER =
* TemporalAdjusters.ofDateAdjuster(date -> date.plusDays(2));
* }</pre>
*
* @param dateBasedAdjuster the date-based adjuster, not null
* @return the temporal adjuster wrapping on the date adjuster, not null
*/
public static TemporalAdjuster ofDateAdjuster(UnaryOperator<LocalDate> dateBasedAdjuster) {
Objects.requireNonNull(dateBasedAdjuster, "dateBasedAdjuster");
return (temporal) -> {
LocalDate input = LocalDate.from(temporal);
LocalDate output = dateBasedAdjuster.apply(input);
return temporal.with(output);
};
}
/**
* Atomically updates the current value with the results of
* applying the given function, returning the updated value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the updated value
* @since 1.8
*/
public final V updateAndGet(UnaryOperator<V> updateFunction) {
V prev, next;
do {
prev = get();
next = updateFunction.apply(prev);
} while (!compareAndSet(prev, next));
return next;
}
/**
* Atomically updates the element at index {@code i} with the results
* of applying the given function, returning the updated value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param i the index
* @param updateFunction a side-effect-free function
* @return the updated value
* @since 1.8
*/
public final E updateAndGet(int i, UnaryOperator<E> updateFunction) {
long offset = checkedByteOffset(i);
E prev, next;
do {
prev = getRaw(offset);
next = updateFunction.apply(prev);
} while (!compareAndSetRaw(offset, prev, next));
return next;
}
/**
* Atomically updates the current value with the results of
* applying the given function, returning the updated value. The
* function should be side-effect-free, since it may be re-applied
* when attempted updates fail due to contention among threads.
*
* @param updateFunction a side-effect-free function
* @return the updated value
* @since 1.8
*/
public final V updateAndGet(UnaryOperator<V> updateFunction) {
V prev, next;
do {
prev = get();
next = updateFunction.apply(prev);
} while (!compareAndSet(prev, next));
return next;
}
/**
* Obtains a {@code TemporalAdjuster} that wraps a date adjuster.
* <p>
* The {@code TemporalAdjuster} is based on the low level {@code Temporal} interface.
* This method allows an adjustment from {@code LocalDate} to {@code LocalDate}
* to be wrapped to match the temporal-based interface.
* This is provided for convenience to make user-written adjusters simpler.
* <p>
* In general, user-written adjusters should be static constants:
* <pre>{@code
* static TemporalAdjuster TWO_DAYS_LATER =
* TemporalAdjusters.ofDateAdjuster(date -> date.plusDays(2));
* }</pre>
*
* @param dateBasedAdjuster the date-based adjuster, not null
* @return the temporal adjuster wrapping on the date adjuster, not null
*/
public static TemporalAdjuster ofDateAdjuster(UnaryOperator<LocalDate> dateBasedAdjuster) {
Objects.requireNonNull(dateBasedAdjuster, "dateBasedAdjuster");
return (temporal) -> {
LocalDate input = LocalDate.from(temporal);
LocalDate output = dateBasedAdjuster.apply(input);
return temporal.with(output);
};
}